
Improving Abstract Reasoning Ability of Large Language Models through
Mixture Program-based Data Synthesis

Yile Wang, Hui Huang�
College of Computer Science and Software Engineering, Shenzhen University

wangyile@szu.edu.cn, hhzhiyan@gmail.com

Abstract

Abstract reasoning is a challenging task that involves identifying patterns from limited input-
output grids and applying them to new grids. With the development of large language models
(LLMs), recent studies attempt to transfer the problems to textual format and tackle abstract
reasoning tasks using models such as GPT-4. However, the overall accuracy is still low, which
also results in the poor quality of abstract reasoning data directly synthesized by GPT-4, making it
unsuitable as effective fine-tuning data. In this paper, we propose mixture program-based data
synthesis strategies, including low-level code-based synthesis, high-level DSL-based synthesis,
and shuffle-based synthesis. Through these strategies, we construct diverse and valid abstract
reasoning instruction data to help improving the general abstract reasoning ability of LLMs for
multiple datasets. Experimental results show that, by supervised fine-tuning Qwen-2.5-7B on
our synthesized instruction data, the resulting model shows improved abstract reasoning ability
and outperforms various strong baseline LLMs, including closed-source model GPT-4 and open-
source models such as LLaMA-3 and Qwen-2.5. We release the logs by GPT and our model at
https://github.com/szu-tera/ARC.

Keywords: Large Language Models , Abstract Reasoning , Data Synthesis

1 Introduction

Abstract reasoning tasks require uncovering underlying operations from a limited number of grid-based
input-output pairs and predicting the output accordingly for a new test input, as shown in Table 1. This
task is of great value in assessing current artificial intelligence (Chollet, 2019) and has gained the attention
from researchers (Lee et al., 2024; Li et al., 2024; Chollet et al., 2024).

Recent studies find that large language models (LLMs) inherently possess some analogy reason-
ing (Webb et al., 2023) and pattern recognition (Mirchandani et al., 2023) capabilities, enabling them to
solve few abstract reasoning problems. However, there still exists a gap compared with human (Mitchell
et al., 2023; LeGris et al., 2024). In contrast to commonsense (Talmor et al., 2019) and mathematical
reasoning (Cobbe et al., 2021) which LLMs excel at, the main challenges for abstract reasoning lies in
three aspects:

1) Abstract reasoning tasks have a strict form, with some problems requiring complex prior knowledge
and being quite challenging (Chollet, 2019). This results in a scarcity of manually designed data, making
it difficult for sufficient model training. 2) Unlike the problems in natural language expressions, abstract
reasoning problems are composed of transferred sequence of numbers. This less common data also poses
challenges for LLMs to tackle such tasks (Wang et al., 2025). 3) Although there are some post-training
chain-of-thought (Wei et al., 2022b) prompting techniques to elicit the reasoning ability of LLMs, they
are primarily useful for math and symbolic problems (Sprague et al., 2024), and we also find that these
methods are not particularly helpful for abstract reasoning tasks.

©2025 China National Conference on Computational Linguistics
Published under Creative Commons Attribution 4.0 International License

https://github.com/szu-tera/ARC

China National Conference on Computational Linguistics

A Visualized Example in Abstract Reasoning Tasks

?

Data Cost ↓ Validity ↑ #Samples ↑ Generalization ↑

By Human High High Small Low
By GPT High Low Large High
By Ours Low High Large High

Table 1: Top: An example in abstract reasoning tasks with input-output grids following underlying
operations. Bottom: Comparing human-labeled, GPT-generated, and our program-based synthesized data.

In this work, we aim to tackle the above challenges from the perspective of data synthesis. Considering
the characteristics of abstract reasoning task, we propose program-based data synthesis to construct more
training data to further improve the abstract reasoning ability of LLMs. In particular, we introduce three
strategies, including low-level code-based synthesis, high-level DSL (domain specific language)-based
synthesis, and shuffle-based synthesis, which allow us to generate diverse and valid data at a lower cost
for instruction tuning open-source LLMs. We find that the mixture of low-level and high-level data helps
the generalization of abstract reasoning on diverse datasets.

We conduct supervised fine-tuning (Ouyang et al., 2022b) on Qwen-2.5-7B (Yang et al., 2024) using
our synthetic instruction data and find that the resulting model show largely improved performance across
four datasets, and it outperforms various closed-source and open-source LLMs, including GPT-3.5, GPT-4,
GPT-4o, LLaMA-3, and Qwen-2.5, demonstrating the effectiveness of our program-based data synthesis.
To the best of our knowledge, we are the first to evaluate general abstract reasoning ability on four complete
datasets including ARC (Chollet, 2019), Mini-ARC (Kim et al., 2022), Concept-ARC (Moskvichev et al.,
2023), and 1D-ARC (Xu et al., 2024), while most works focus on one of them or selected problems.

2 Method

2.1 Task Formulation

Formally, a sample from the abstract reasoning task is defined as follows. Given n input grids {Ii}ni=1

and n output grids {Oi}ni=1 that satisfy Oi = T (Ii) for i = 1, 2, ..., n, where T represents an implicit
operation that transforms each input grid Ii to its corresponding output grid Oi, n is usually 3∼4. The task
is to predict the output grid Ot for a given test input grid It following the transformation T . Specifically,
in abstract reasoning corpus (ARC) dataset (Chollet, 2019), {Ii}ni=1, {Oi}ni=1, It, and Ot can be replaced
by two-dimensional textual arrays, wherein the elements are integers 0 to 9 for indicating different colors.

The original training set of ARC dataset contains only 400 samples, and each of them differs in the
transformation T , which makes neural models difficult to learn from limited data and generalize to new
samples for testing abstract reasoning ability. To compensate for the scarcity of abstract reasoning data
and alleviate the difficulty of manually designing such complicated paired grids, we aim to automatically
synthesize more diverse and valid data that contributes to enhancing abstract reasoning ability of LLMs.
Specifically, we propose three program-based data synthesis strategies in following subsections.

2.2 Low-level Code-based Synthesis

Considering that the inputs and outputs are all two-dimensional arrays, we select some common array
operations as our low-level transformation T . The ten low-level operations we used are shown in Table 2,

China National Conference on Computational Linguistics

Transformation Tcode Example of Input-Output Grids Visualization

TRANSPOSE 3,0,0\n0,1,2 → 3,0\n0,1\n0,2
FLIP (horizontal, vertical) 3,0,0\n0,1,2 → 0,0,3\n2,1,0
SHIFT (left, right, up, down) 3,0,0\n0,1,2 → 0,0,0\n1,2,0
STRIP (around) 0,0,0\n0,3,0\n0,0,0 → 3
EXPAND (around) 2 → 0,0,0\n0,2,0\n0,0,0
DELETE (horizontal, vertical) 3,0\n0,1\n0,2 → 3,0\n0,2
INSERT (horizontal, vertical) 3,0\n0,1 → 3,0,0\n0,0,1
DUPLICATE (horizontal, vertical) 3\n1 → 3,3\n1,1
CUT (left, right, up, down) 1,0\n0,3 → 0\n3
MASK (diagonally) 3,3,1\n0,1,2\n2,1,0 → 0,3,0\n0,0,2\n0,1,0

A Synthesized Textual Sample for LLMs with TRANSPOSE Operation Visualization

(Instruction)

? ()

You are a smart chatbot. Your goal is to give the output for the last input.
input:\n3,0,0\n0,1,2\n (I1) output:\n3,0\n0,1\n0,2\n (O1)
input:\n1\n0\n (I2) output:\n1,0\n (O2)
input:\n7,0,2,0\n (I3) output:\n7\n0\n2\n0\n (O3)
input:\n0,2,7\n0,7,3\n2,0,3\n (It) output:\n
(Ground Truth)
0,0,2\n2,7,0\n7,3,3\n (Ot)

Table 2: Top: Ten low-level basic transformations, examples of two-dimensional input-output grids, and
visualizations. Bottom: A synthesized sample which simulates abstract reasoning task with underlying
“transpose” operation. The grids in green are sampled, and the grids in blue are automatically generated
through transformation code Tcode.

including “TRANSPOSE”, “FLIP”, “SHIFT”, “STRIP”, “EXPAND”, “DELETE”, “INSERT”, “DUPLICATE”,
“CUT”, and “MASK”. All the basic operations can all be implemented via corresponding simple code
Tcode (e.g., few lines of python function). Based on code implementations, we can first generate uniformly
distributed inputs {Ii}ni=1 and It with two-dimensional arrays composed of integers from 0 to 9, and then
obtain the corresponding transformed outputs {Oi}ni=1 = {Tcode(Ii)}ni=1 and Ot = Tcode(Ot) through
Tcode automatically. These input-output grids can be further formalized as instruction tuning data with
instruction and ground truth response. Note that we avoid designing complex task-specific foundational
low-level operations. We hope that these meta operations can enhance the model’s more generalized
abstract reasoning abilities.

2.3 High-level DSL-based Synthesis

Besides basic operations, the ARC dataset also requires higher-level prior knowledge for abstract reasoning,
such as object priors, goal-directedness priors, numbers and counting priors, geometry and topology priors,
which imposes higher challenges on constructing both input grids ({Ii}ni=1, It) and underlying operations
(T). However, it is difficult to accomplish through codes with simple array operations. Therefore, we
consider performing data synthesis based on higher-level domain specific language (DSL) for the task.

We apply the released DSL data by Hodel (2024) for the 400 training task from ARC dataset. By
calling pre-defined primitives, the DSL generator simulates each task, including the input grids and
the corresponding operation. By using DSL generator, we can synthesize samples that better match
the distribution of the training set from ARC dataset. In Figure 1, we show an example of using DSL
generator to synthesize samples following task d037b0a7 from limited training set of ARC. We hope that
the combination of high-level and low-level data can help LLMs solve both challenging and simplified
abstract reasoning problems, thereby facilitating stronger generalization ability.

China National Conference on Computational Linguistics

def generate_d037b0a7(diff_lb: float, diff_ub: float) -> dict:
 cols = interval(0, 10, 1)
 h = unifint(diff_lb, diff_ub, (3, 30))
 w = unifint(diff_lb, diff_ub, (3, 30))
 bgc = choice(cols)
 remcols = remove(bgc, cols)
 gi = canvas(bgc, (h, w))
 go = canvas(bgc, (h, w))
 nlocs = unifint(diff_lb, diff_ub, (1, w))
 locs = sample(interval(0, w, 1), nlocs)
 for j in locs:
 col = choice(remcols)
 loci = randint(0, h - 1)
 loc = (loci, j)
 gi = fill(gi, col, {loc})
 go = fill(go, col, connect(loc, (h - 1, j)))
 return {'input': gi, 'output': go}

interval

rbind

compress

switch

canvas

sample

inbox

shape

connect

......

(c) DSL for Generating Sample d037b0a7(b) Sample d037b0a7(a) DSL Primitive Calls

(d) DSL-based Synthesized Sample #1 (e) DSL-based Synthesized Sample #2

? () ? ()

? ()

Figure 1: An example illustrating how to synthesize two samples (d, e) based on a specific sample (b)
using DSL (domain specific language) generator (c), where the DSL generator involves using serval DSL
primitive calls (a).

?()

Original Sample

?()

Shuffle-based Sample #1

?()

Shuffle-based Sample #3

?()

Shuffle-based Sample #4Shuffle-based Sample #2

?() ?()

Shuffle-based Sample #5

Figure 2: An example illustrating the original sample and five shuffle-based augmented samples.

2.4 Shuffle-based Synthesis

The last strategy is rather intuitive. Given a synthetic sample with {Ii}ni=1, {Oi}ni=1, It, and Ot, consider-
ing that the n input-output pairs {Ii,Oi}ni=1 and the test pair {It,Ot} follow the same operation T and
they are order-agnostic, we can shuffle the order of each pair to construct a total of n(n+1)

2 valid samples
that require abstract reasoning ability with the same operation T . As an example shown in Figure 2, for a
task with 2 input-output pairs and 1 test pair, we can expand it to six samples with the same “TRANSPOSE”
operation. In practice, we randomly select 3∼5 shuffle-based augmented samples out of all combinations.

2.5 Overall Comparison with Previous Work on Abstract Reasoning

In Table 3, we compare with previous work on abstract reasoning from different perspectives. In particular,
we apply our model across all four abstract reasoning tasks and require no external prompting or test-time
costs (e.g., training or calling large language models).

3 Experiments

3.1 Settings

Supervised Fine-tuning. Based on our three data synthesis strategies, we perform supervised fine-tuning
(SFT) on open-source models using the collected 300k instruction tuning data, including 50k low-level

China National Conference on Computational Linguistics

Related Work
Evaluation Datasets External Requirement

ARC Concept-ARC 1D-ARC Mini-ARC Prompting Test-time Costs

Concept-ARC (Moskvichev et al., 2023) - full - - no no
Object-based Reasoning (Xu et al., 2024) - - subsets - yes no
Symbol2Language (Wang et al., 2025) - - subsets - yes no
ReARC (Hodel, 2024) full - - - no no
Hypothesis Search (Qiu et al., 2024) - - - full no yes
Test-Time Training (Akyürek et al., 2024) full - - - no yes

Ours full full full full no no

Table 3: Overall comparison with previous work on ARC-like problems.

Method #Problems Solved Method #Problems Solved

(Reported by Mirchandani et al. (2023)) (Our results, pass@1)
gpt-4-0613 77 gpt-3.5-turbo-0125 42
text-davinci-003 (Ouyang et al., 2022a) 85 gpt-4-0613 113
text-davinci-002 (Ouyang et al., 2022a) 64 gpt-4o-mini 42
PaLM (Chowdhery et al., 2023) 42 LLaMA-3-8B 10
Ainooson et al. (2023) 130 LLaMA-3-8B w/ CoT 9
Kaggle 1st Place (2020)† 164 Qwen-2.5-7B 38
Xu et al. (2023)‡ 57 Qwen-2.5-7B w/ CoT 31
Ferré (2021) 32 Ours 185

Human Performance* 500∼600

Table 4: The problems solved (out of 800) on ARC dataset. Reported results on left and our results on
right. † among 3 candidates. ‡ out of selected subsets. *: 64.2%∼76.2% accuracy in LeGris et al. (2024).

code-based data, 50k high-level DSL-based data, and 200k shuffle-based data. All instruction tuning
data is synthetic and does not include any evaluation samples. We follow LLaMA-Factory (Zheng
et al., 2024) and apply LoRA (Hu et al., 2022) fine-tuning on LLaMA-3-8B (Dubey et al., 2024) and
Qwen-2.5-7B (Yang et al., 2024) model using 4 NVIDIA 6000 Ada GPUs, with learning rate 1e-4, batch
size 32, and epochs 5 (when the performance becomes saturated). We choose the checkpoint based on
Qwen-2.5-7B as our final model considering its better performance.
Datasets. We evaluate on the original ARC dataset (Chollet, 2019) as well as three modified versions of
ARC, including Mini-ARC (Kim et al., 2022), Concept-ARC (Moskvichev et al., 2023), and 1D-ARC (Xu
et al., 2024).
Baselines. We compare with widely-used LLMs, including closed-source GPT-3.5-turbo (OpenAI,
2022), GPT-4 (OpenAI, 2023), and GPT-4o-mini (OpenAI, 2024) models, as well as open-source models
LLaMA-3-8B (Dubey et al., 2024) and Qwen-2.5-7B (Yang et al., 2024). We use the same instruction
without any prompt engineering except for zero-shot chain-of-thought (CoT) baseline with “Let’s think
step by step” prompts (Kojima et al., 2022) to elicit reasoning ability. In addition, we also compare to few
existing reported results such as self-refine (Madaan et al., 2023) and hypothesis search (Qiu et al., 2024)
on each dataset mentioned above. The decoding temperature is set as 0 and we evaluate using pass@1
accuracy based on single response.

3.2 Main Results
ARC Dataset. The results on ARC dataset are shown in Table 4. The study by Mirchandani et al. (2023)
mainly show that LLMs can extract general patterns from limited observations. For instance, text-davinci-
003 solves 85 problems, surpassing or approaching some specific symbolic methods by Xu et al. (2023)
and Ainooson et al. (2023).

Among the results we obtained, gpt-4-0613 performs the best (solves 113 problems), surpassing
gpt-3.5-turbo-0125 and showing a stronger textual reasoning capability. Additionally, it outperformed

China National Conference on Computational Linguistics

Concept GPT-4 (τ=0)† GPT-4 (τ=0.5)† gpt-3.5-turbo-0125 gpt-4-0613 gpt-4o-mini LLaMA-3-8B (w/ CoT) Qwen-2.5-7B (w/ CoT) Ours Human‡

Above and Below 0.23 0.37 0.10 0.30 0.10 0.00 (0.03) 0.03 (0.00) 0.27 0.90
Center 0.33 0.33 0.03 0.33 0.17 0.03 (0.07) 0.13 (0.10) 0.17 0.94
Clean Up 0.20 0.27 0.17 0.40 0.13 0.00 (0.00) 0.03 (0.03) 0.33 0.97
Complete Shape 0.23 0.23 0.10 0.23 0.10 0.03 (0.00) 0.07 (0.10) 0.23 0.85
Copy 0.23 0.27 0.07 0.23 0.13 0.07 (0.07) 0.03 (0.07) 0.20 0.94
Count 0.13 0.17 0.07 0.07 0.03 0.03 (0.03) 0.10 (0.07) 0.13 0.88
Extend To Boundary 0.07 0.10 0.03 0.10 0.03 0.00 (0.00) 0.03 (0.07) 0.20 0.93
Extract Objects 0.03 0.07 0.00 0.03 0.00 0.00 (0.00) 0.00 (0.00) 0.17 0.86
Filled and Not Filled 0.17 0.27 0.07 0.23 0.07 0.00 (0.07) 0.17 (0.17) 0.40 0.96
Horizontal and Vertical 0.27 0.33 0.03 0.17 0.10 0.07 (0.03) 0.07 (0.07) 0.23 0.91
Inside and Outside 0.10 0.16 0.03 0.13 0.03 0.03 (0.00) 0.07 (0.07) 0.27 0.91
Move To Boundary 0.20 0.20 0.00 0.17 0.03 0.00 (0.00) 0.00 (0.00) 0.17 0.91
Order 0.27 0.27 0.27 0.27 0.17 0.07 (0.03) 0.17 (0.13) 0.20 0.83
Same and Different 0.17 0.27 0.03 0.17 0.17 0.10 (0.07) 0.03 (0.30) 0.30 0.88
Top and Bottom 2D 0.23 0.37 0.10 0.40 0.13 0.00 (0.00) 0.13 (0.03) 0.43 0.95
Top and Bottom 3D 0.20 0.27 0.07 0.13 0.13 0.03 (0.00) 0.03 (0.03) 0.40 0.93

All Concepts 0.19 0.24 0.07 0.22 0.10 0.03 (0.03) 0.09 (0.08) 0.26 0.91

Table 5: Accuracy on Concept-ARC with 16 concepts (30 problems each). † Reported by Moskvichev et
al. (2023). ‡: Reported by Mitchell et al. (2023).

Task GPT-3.5† GPT-4† gpt-3.5-turbo-0125 gpt-4-0613 gpt-4o-mini LLaMA-3-8B (w/ CoT) Qwen-2.5-7B (w/ CoT) Ours

1D Move 1p 0.20 0.66 0.40 0.70 0.46 0.36 (0.26) 0.28 (0.34) 0.68
1D Move 2p 0.06 0.26 0.12 0.40 0.16 0.06 (0.06) 0.14 (0.10) 0.26
1D Move 3p 0.14 0.24 0.10 0.24 0.08 0.14 (0.06) 0.16 (0.10) 0.12
1D Move Dynamic 0.12 0.22 0.16 0.22 0.08 0.08 (0.12) 0.10 (0.06) 0.08
1D Move 2p Towards 0.06 0.34 0.26 0.48 0.24 0.06 (0.10) 0.12 (0.12) 0.42
1D Fill 0.12 0.66 0.18 0.80 0.30 0.22 (0.22) 0.42 (0.48) 0.90
1D Padded Fill 0.06 0.26 0.06 0.68 0.14 0.08 (0.04) 0.16 (0.14) 0.72
1D Hollow 0.04 0.56 0.20 0.64 0.12 0.14 (0.18) 0.26 (0.30) 0.74
1D Flip 0.22 0.70 0.48 0.68 0.48 0.44 (0.22) 0.42 (0.32) 0.80
1D Mirror 0.08 0.20 0.08 0.10 0.02 0.04 (0.02) 0.06 (0.06) 0.26
1D Denoise 0.22 0.36 0.14 0.64 0.14 0.10 (0.02) 0.16 (0.22) 0.98
1D Denoise Multicolor 0.26 0.60 0.52 0.90 0.38 0.28 (0.08) 0.24 (0.28) 0.92
1D Pattern Copy 0.22 0.36 0.22 0.62 0.36 0.06 (0.02) 0.46 (0.38) 0.80
1D Pattern Copy Multicolor 0.32 0.38 0.24 0.54 0.32 0.24 (0.08) 0.42 (0.36) 0.80
1D Recolor by Odd Even 0.26 0.32 0.24 0.28 0.24 0.18 (0.10) 0.28 (0.22) 0.24
1D Recolor by Size 0.04 0.28 0.06 0.28 0.04 0.04 (0.04) 0.10 (0.10) 0.24
1D Recolor by Size Comparison 0.12 0.20 0.10 0.22 0.12 0.08 (0.02) 0.10 (0.16) 0.20
1D Scaling 0.28 0.88 0.38 0.88 0.30 0.52 (0.32) 0.44 (0.48) 0.78

All Tasks 0.16 0.42 0.22 0.52 0.22 0.17 (0.11) 0.24 (0.23) 0.55

Table 6: Accuracy on 1D-ARC with 18 sub-tasks (50 problems each). † Reported by Xu et al. (2024).

gpt-4o-mini, indicating that multimodal ability does not significantly aid in abstract reasoning, which
aligns with the findings of Mitchell et al. (2023). The performance of 7/8B open-source models is very
poor, only solve less than 40 problems, showing the incapability of abstract reasoning. Furthermore, we
find that using CoT reasoning does not improves the results, which aligns with recent studies indicating
that CoT is not a broadly effective method, where its effectiveness mainly lies in math and symbolic
problems (Sprague et al., 2024). As comparison, after supervised fine-tuning Qwen-2.5-7B model on
program-based synthesized instruction data, our 7B size model outperforms various closed-source
and open-source LLMs, solving 185 problems without using any prompting techniques. Overall, the
results demonstrates the effectiveness of our program-based data synthesis, which can improve the abstract
reasoning ability of LLMs by large margin.
Concept-ARC. The results on Concept-ARC dataset are shown in Table 5. Similarly, our model achieves
the best performance (26% overall accuracy) compared with GPT-4 (24% accuracy) and open-source
models (3%∼9% accuracy). We find that our model performs well in recognizing concepts like
“top&bottom” and “filled¬ filled”, with accuracy exceeding 40%. In contrast, the model performs
poorly in counting related problems, with only 13% accuracy, which also reflects the current limitations
of LLMs in some basic arithmetic capabilities (Yehudai et al., 2024).
1D-ARC. The results on 1D-ARC dataset are shown in Table 6. Different from standard ARC dataset, all
input-output pairs of 1D-ARC are composed of grids with only a single row. We find that our model still
show a large improvement compared to baselines including LLaMA-3 and Qwen-2.5, even surpassing
gpt-4-0613 model. Moreover, our model achieve 98% accuracy for sub-problems with “denoise”
operations, while we do not explicit construct data with similar operations. These results indicate our

China National Conference on Computational Linguistics

Method Accuracy

gpt-3.5-turbo-0125 0.107
gpt-4-0613 0.241
gpt-4o-mini 0.100
LLaMA-3-8B 0.047
LLaMA-3-8B w/ CoT 0.047
Qwen-2.5-7B 0.094
Qwen-2.5-7B w/ CoT 0.101
gpt-4-0613 w/ Self-refine (Madaan et al., 2023)† 0.151
gpt-4-0613 w/ Hypothesis Search (Qiu et al., 2024)† 0.187
Ours 0.201

Table 7: Accuracy on 150 problems in Mini-ARC. † Reported by Qiu et al. (2024).

Ours w/o SD w/o SD,LD w/o SD,LD,HD
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

Pa
ss

@
1

Ac
cu

ra
cy

ARC
Concept-ARC
1D-ARC
Mini-ARC

Figure 3: Ablation study on different types of synthesized data. SD: shuffle-based data. LD: low-level
code-based data. HD: high-level DSL-based data.

program-based synthesized 2D data indeed helps enhancing abstract reasoning ability, not simply by
memorizing more samples, but by having a certain level of generalization in solving related problems.
Mini-ARC. The results on Mini-ARC dataset are shown in Table 7. Overall, gpt-4-0613 gives the
best results (24.1% accuracy), however, Qiu et al. (2024) indicate that explicit post-training methods
such as self-refine (Madaan et al., 2023) and hypothesis search (Qiu et al., 2024) lead to decreased
results (15.1% and 18.7% accuracy). As for the results from direct response, our model achieves the
second-best performance (20.1% accuracy) without relying on post-training techniques, still consistently
outperforming gpt-3.5-turbo-0125, gpt-4o-mini, and open-source models.

3.3 Ablation Study

We further analyze the impact of our different types of synthetic data. Specifically, we trained the model
by gradually removing the part of shuffle-based data, low-level code-based data, and high-level DSL-based
data, while keeping the total training steps consistent. Then we evaluate different checkpoints separately
across all datasets.

The results are shown in Figure 3. We find that the performance on various datasets experiences a
slight decrease without shuffle-based data. The code-based data has the largest impact on 1D-ARC and
consistently aids on other datasets. As for the DSL-based data, since it is originally designed based on the
samples from ARC, it closely resembles ARC in terms of data distribution and lead to larger improvement.
However, if we only use the DSL data as adopted by Hodel (Hodel, 2024), the performance on Mini-ARC

China National Conference on Computational Linguistics

HD: LD ARC Concept-ARC 1D-ARC Mini-ARC Avg.

50%: 50% 0.23 0.26 0.55 0.20 0.31
70%: 30% 0.24 0.26 0.34 0.12 0.24
30%: 70% 0.13 0.16 0.58 0.22 0.27

Table 8: Results with different ratio of mixture data.

Prompt and Generated Pairs by GPT-4 Re-organized GPT-Generated Data for Abstract Reasoning
(Instruction & Limited Pairs from ARC Dataset) (Instruction & GPT-Generated Input-Output Grids)
Generate more input and output following the same operation. You are a smart chatbot. Your goal is to give the output for the
last input. last input.
input: I1 output: O1, input: I2 output: O2, input: Igen

1 output: Ogen
1 , input: Igen

2 output: Ogen
2 ,

input: I3 output: O3 input: Igen
3 output:

(Response by GPT-4) (GPT-Generated Ground Truth)
input: Igen

1 output: Ogen
1 , input: Igen

2 output: Ogen
2 , Ogen

3

input: Igen
3 output: Ogen

3 , input: Igen
4 output: Ogen

4 ,
...

Table 9: Illustration of synthesizing ARC data using GPT-4. We re-organize the generated grids for
constructing more data and fine-tuning open-source LLMs.

and 1D-ARC quickly saturates and will not exceed or come close to the level of gpt-4-0613.
For different ratio of high- and low-level data, results in Table 8 show that A balanced using of both

types of data yields the best overall results, where high-level data only show limited improvements
for 1D-ARC and Mini-ARC, and similarly, low-level data offers limited improvements for ARC and
Concept-ARC. Overall, combining different types of synthetic data contribute to enhancing the general
abstract reasoning ability of LLMs across different datasets, showing the importance of mixture of
low-level and high-level synthesized data.

4 Analysis

Comparison with Synthetic Data by GPT-4. Researchers have been investigating the utilization of LLMs
(e.g., GPT-4) to produce synthetic datasets directly. As for the abstract reasoning task, we also considering
using LLMs to synthesize more diverse input-output grids that follow to the same operations based on
given input-output grids, and then constructing synthesized instruction data based on the generated results,
as illustrated in Table 9.

Similarly, we utilize the collected synthetic GPT-generated data for supervised fine-tuning and compare
it with our program-based synthesized data. The GPT-generated data is used in two ways: 1) We directly
use them for fine-tuning Qwen-7B with the same steps as comparison. 2) Based on our model trained on
program-based synthesized data, we use them for continued training with 3000 steps.

The results are shown in Figure 4. By using GPT-generated data, the performance improvement of
Qwen-2.5 is very marginal. Moreover, we find that regardless of whether the model was trained directly on
Qwen-2.5 or continued training based on our model, there was a certain degree of performance gaps, with
accuracy on 1D-ARC even drops by 23%. This suggests that the data quality synthesized automatically
by GPT is poor for the challenging non-natural language based reasoning task with abstract sequence of
numbers. This also indicates the validity and effectiveness of our program-based data synthesis strategies.
We also show some failure cases of the GPT-generated invalid data in Appendix B.
Length of Input-Output Grids. Intuitively, longer input-output grids may indicate more complicated
underlying operations, making it more challenging for LLMs. We conduct analyses on problems of
varying lengths and the results are shown in Figure 5. We find that the performance indeed drops as
the length increases on ARC dataset. However, for problems in concept-ARC, the impact of increasing
length is not significant. In contrast, for problems on 1D-ARC and Mini-ARC, the model performs better

China National Conference on Computational Linguistics

Figure 4: Results with GPT-generated synthetic data.

for longer problems. This suggests that the difficulty of abstract reasoning tasks is not fully related to
the length of the problems. It is more crucial to solve abstract reasoning tasks from transformation
understanding and generation perspectives rather than dealing with long texts for existing LLMs.
Error Analysis. Analyzing errors in ARC dataset directly is quite challenging because each sample
presents unique and highly challenging operation. Therefore, most errors stem from the lack of under-
standing for these transformations. To conduct a more intuitive and fine-grained analysis, we select
problems with “Move-1p”, “Move-2p”, and “Move-3p” operations from 1D-ARC. These operations are
generally considered straightforward for humans which moves the object in grids forward for few pixels.
However, the model’s accuracy on these 150 problems is relatively low (12%∼68%), as shown in the first
three rows of Table 6.

The results are shown in Figure 6. Qwen-2.5 only solves 19.3% problems, with the majority of errors
attributed to incorrect steps, inconsistent object, and incorrect repetition. Specifically, the incorrect
repetition results accounted for 25.3%, where the response keeps the same with the test inputs, indicating
a failure to recognizing the “move” operation from given grids. In our model, the accuracy increases to
35.3%, though incorrect steps and inconsistent object errors remains high, which indicates some inherent
LLMs’ issues of counting and planning ability due to the nature of auto-regressive language
model (Bubeck et al., 2023). We note that incorrect repetition issue decreases to 7.3%, suggesting an
improvement in the model’s ability to recognize underlying transformation and take operations for test
inputs accordingly.
Case Study. In appendix A, we show responses by gpt-4-0613 and our model for different datasets in
Tables 10∼13, respectively.

5 Related Work

Evaluating Abstract Reasoning Ability of LLMs. Recent studies test the abstract reasoning ability
of LLMs (LeGris et al., 2024; Lee et al., 2024) and compare the results with human performance.
Mirchandani et al. (2023) shows that GPT-3 can recognize patterns and solve problems on ARC dataset.
Mitchell et al. (2023) reveals that GPT-4 and GPT-4V only achieve 65% and 25% accuracy for 48 select
sub-tasks, lower than the 95% accuracy by humans. Xu et al. (2024) and Moskvichev et al. (2023)
evaluate GPT-4 and LLaMA-2 models on proposed 1D-ARC and Concept-ARC datasets, respectively.
Overall, there is room for further enhancement in performance and generalization across different types of
problems.
Improving Abstract Reasoning Ability of LLMs. Xu et al. (2024) proposes “objective-based” repre-
sentation to describe the input-output grids. Wang et al. (2025) uses “symbol-to-language” prompting to
integrate textual representations. Huang et al. (2023) and Qiu et al. (2024) propose generating codes for
underlying operations during reasoning. Akyürek et al. (2024) investigate test-time training for abstract

China National Conference on Computational Linguistics

Figure 5: The fine-grained results for problems with different length of input-output grids after tokenization
operationfor different datasets.

(a) Grids w/ Operation “Move-2p” (b) Predictions for Test Input

Correct
35.3%

IS
21.3%

IO
25.3%

IR
7.3%

ID 6.7%
IB 2.7%

IG 2.0%
IC <1.0%

Correct
19.3%

IS 26.7%

IO
17.3%

IR
25.3%

ID 6.7%
IB <1.0%

IG 2.0%
IC 2.0%

(d) Error Distribution in “Move-xp”

Qwen-2.5

Ours

Correct

Incorrect Steps (IS)

Inconsistent Object (IO)

Incorrect Repetition (IR)

Incorrect Direction (ID)

Incorrect Blanks (IB)

Invalid Grids (IG)

Incorrect Color (IC)

(c) Error Types

Figure 6: Error analysis for samples with “move 1/2/3 pixels” operations. (a) A “move 2 pixels” example.
(b) Test input and possible model predictions. (c) Different error types. (d) Error distribution for Qwen-2.5
and our model.

reasoning. These efforts improves the performance of LLMs to some extent. However, they either rely on
prompt design or increase the inference cost, and are limited in a single dataset or few selected subsets.
Further, our data synthesis method can combine with these post-training approaches in a straightforward
manner, i.e., leveraging these methods on models trained with the mixture synthesized data.
Data Synthesis in the Era of LLMs. LLMs-driven data synthesis and augmentation have gained much
attention (Long et al., 2024; Liu et al., 2024; Wang et al., 2024). Data synthesis can help improving various
abilities of LLMs, including instruction-following (Wei et al., 2022a), reasoning (Wei et al., 2022b),
coding (Roziere et al., 2023), and human-preference aligning (Ouyang et al., 2022b), etc. Given sufficient
training data resources, LLMs can synthesize high-quality data of these common tasks. However, for
abstract reasoning, the complexity of tasks result in the scarcity of training data and poor performance of
current models. Therefore, we still need more reliable data synthesis methods beyond using LLMs.

6 Conclusion and Future Work

We propose different program-based data synthesis strategies to construct data for abstract reasoning task,
including low-level code-based synthesis, high-level DSL-based synthesis, and shuffle-based synthesis.
These strategies allows us to generate a large amount of valid data at a low cost, serving as useful
instruction tuning data for LLMs. Experimental results show that it consistently improves the abstract
reasoning ability of 7B size open-source LLMs across four datasets, surpassing various widely-used
LLMs such as GPT-3.5, GPT-4, GPT-4o, LLaMA-3, and Qwen-2.5 without using any post-training
techniques. For future work, we plan to explore integrating test-time scaling methods to further enhance
the performance of smaller open-source models on the ARC dataset.

China National Conference on Computational Linguistics

Acknowledgements

This work is supported in parts by NSFC (62306161, U21B2023), DEGP Innovation Team (2022KC
XTD025), Shenzhen Science and Technology Program (KJZD20240903100022028, KQTD20210811
090044003, RCJC20200714114435012), and Scientific Development Funds from Shenzhen University.

References
James Ainooson, Deepayan Sanyal, Joel P Michelson, Yuan Yang, and Maithilee Kunda. 2023. A neurodiversity-

inspired solver for the abstraction\& reasoning corpus (arc) using visual imagery and program synthesis. arXiv
preprint arXiv:2302.09425.

Ekin Akyürek, Mehul Damani, Linlu Qiu, Han Guo, Yoon Kim, and Jacob Andreas. 2024. The surprising
effectiveness of test-time training for abstract reasoning. arXiv preprint arXiv:2411.07279.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee,
Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. 2023. Sparks of artificial general intelligence: Early experiments
with GPT-4. arXiv preprint arXiv:2303.12712.

Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. 2024. ARC prize 2024: Technical report.
arXiv preprint arXiv:2412.04604.

François Chollet. 2019. On the measure of intelligence. arXiv preprint arXiv:1911.01547.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,
Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko,
Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif,
Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng
Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant
Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai,
Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta,
Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2023. Palm: Scaling
language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. 2021. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. 2024. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783.

Sébastien Ferré. 2021. First steps of an approach to the arc challenge based on descriptive grid models and the
minimum description length principle.

Michael Hodel. 2024. Addressing the abstraction and reasoning corpus via procedural example generation. arXiv
preprint arXiv:2404.07353.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large language models. In International Conference on Learning
Representations.

Di Huang, Ziyuan Nan, Xing Hu, Pengwei Jin, Shaohui Peng, Yuanbo Wen, Rui Zhang, Zidong Du, Qi Guo,
Yewen Pu, and Yunji Chen. 2023. Anpl: Towards natural programming with interactive decomposition. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information
Processing Systems, volume 36, pages 69404–69440. Curran Associates, Inc.

Kaggle 1st Place. 2020. Abstraction and rasoning challenge 1st place solution.

Subin Kim, Prin Phunyaphibarn, Donghyun Ahn, and Sundong Kim. 2022. Playgrounds for abstraction and
reasoning. In NeurIPS 2022 Workshop on Neuro Causal and Symbolic AI (nCSI).

China National Conference on Computational Linguistics

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large language
models are zero-shot reasoners. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 22199–22213. Curran Associates, Inc.

Seungpil Lee, Woochang Sim, Donghyeon Shin, Wongyu Seo, Jiwon Park, Seokki Lee, Sanha Hwang, Sejin Kim,
and Sundong Kim. 2024. Reasoning abilities of large language models: In-depth analysis on the abstraction and
reasoning corpus. arXiv preprint arXiv:2403.11793.

Solim LeGris, Wai Keen Vong, Brenden M Lake, and Todd M Gureckis. 2024. H-ARC: A robust estimate of human
performance on the abstraction and reasoning corpus benchmark. arXiv preprint arXiv:2409.01374.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M Dunn, Hao Tang,
Michelangelo Naim, Dat Nguyen, et al. 2024. Combining induction and transduction for abstract reasoning.
arXiv preprint arXiv:2411.02272.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng, Diyi
Yang, Denny Zhou, and Andrew M. Dai. 2024. Best practices and lessons learned on synthetic data. In First
Conference on Language Modeling.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang. 2024. On LLMs-driven
synthetic data generation, curation, and evaluation: A survey. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar, editors, Findings of the Association for Computational Linguistics: ACL 2024, pages 11065–11082,
Bangkok, Thailand, August. Association for Computational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,
Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean
Welleck, Amir Yazdanbakhsh, and Peter Clark. 2023. Self-refine: Iterative refinement with self-feedback. In
Thirty-seventh Conference on Neural Information Processing Systems.

Suvir Mirchandani, Fei Xia, Pete Florence, brian ichter, Danny Driess, Montserrat Gonzalez Arenas, Kanishka
Rao, Dorsa Sadigh, and Andy Zeng. 2023. Large language models as general pattern machines. In 7th Annual
Conference on Robot Learning.

Melanie Mitchell, Alessandro B. Palmarini, and Arsenii Kirillovich Moskvichev. 2023. Comparing humans, GPT-4,
and GPT-4v on abstraction and reasoning tasks. In AAAI 2024 Workshop on ”Are Large Language Models
Simply Causal Parrots?”.

Arsenii Kirillovich Moskvichev, Victor Vikram Odouard, and Melanie Mitchell. 2023. The conceptARC benchmark:
Evaluating understanding and generalization in the ARC domain. Transactions on Machine Learning Research.

OpenAI. 2022. ChatGPT.

OpenAI. 2023. GPT-4 technical report. arXiv preprint arXiv:2303.08774.

OpenAI. 2024. GPT-4o system card.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022a. Training language models
to follow instructions with human feedback. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. 2022b. Training language models
to follow instructions with human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 27730–27744. Curran
Associates, Inc.

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula, Bailin Wang, Yoon
Kim, Yejin Choi, Nouha Dziri, and Xiang Ren. 2024. Phenomenal yet puzzling: Testing inductive reasoning
capabilities of language models with hypothesis refinement. In The Twelfth International Conference on Learning
Representations.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu
Liu, Romain Sauvestre, Tal Remez, et al. 2023. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950.

China National Conference on Computational Linguistics

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann Singhal, Xinyu
Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. 2024. To cot or not to cot? chain-of-thought helps mainly on
math and symbolic reasoning. arXiv preprint arXiv:2409.12183.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2019. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and Thamar Solorio,
editors, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4149–4158, Minneapolis,
Minnesota, June. Association for Computational Linguistics.

Ke Wang, Jiahui Zhu, Minjie Ren, Zeming Liu, Shiwei Li, Zongye Zhang, Chenkai Zhang, Xiaoyu Wu, Qiqi Zhan,
Qingjie Liu, et al. 2024. A survey on data synthesis and augmentation for large language models. arXiv preprint
arXiv:2410.12896.

Yile Wang, Sijie Cheng, Zixin Sun, Peng Li, and Yang Liu. 2025. Leveraging language-based representations
for better solving symbol-related problems with large language models. In Owen Rambow, Leo Wanner,
Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert, editors, Proceedings of
the 31st International Conference on Computational Linguistics, pages 5544–5557, Abu Dhabi, UAE, January.
Association for Computational Linguistics.

Taylor Webb, Keith J Holyoak, and Hongjing Lu. 2023. Emergent analogical reasoning in large language models.
Nature Human Behaviour, 7(9):1526–1541.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and
Quoc V Le. 2022a. Finetuned language models are zero-shot learners. In International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, and Denny
Zhou. 2022b. Chain-of-thought prompting elicits reasoning in large language models. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates, Inc.

Yudong Xu, Elias B. Khalil, and Scott Sanner. 2023. Graphs, constraints, and search for the abstraction and
reasoning corpus. Proceedings of the AAAI Conference on Artificial Intelligence, 37(4):4115–4122, Jun.

Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias Boutros Khalil. 2024. LLMs and the
abstraction and reasoning corpus: Successes, failures, and the importance of object-based representations.
Transactions on Machine Learning Research.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei
Huang, Haoran Wei, et al. 2024. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115.

Gilad Yehudai, Haim Kaplan, Asma Ghandeharioun, Mor Geva, and Amir Globerson. 2024. When can transformers
count to n? arXiv preprint arXiv:2407.15160.

Yaowei Zheng, Richong Zhang, Junhao Zhang, YeYanhan YeYanhan, and Zheyan Luo. 2024. LlamaFactory:
Unified efficient fine-tuning of 100+ language models. In Yixin Cao, Yang Feng, and Deyi Xiong, editors,
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System
Demonstrations), pages 400–410, Bangkok, Thailand, August. Association for Computational Linguistics.

A Case Study

We show example of responses by gpt-4-0613 and our model across different datasets in Table 10, Table 11,
Table 12, and Table 13, respectively. In these cases, the response by gpt-4-0613 is inaccurate, while the
answer by our model is accurate.

B Cases of GPT-Generated Samples

We also show some failure cases of GPT-generated samples in Table 14.

China National Conference on Computational Linguistics

Prompt
You are a smart chatbot. Your goal is to give the output
for the last input.
input:8,5,0\n8,5,3\n0,3,2
output:8,5,0,0,8,8\n8,5,3,3,5,5\n0,3,2,2,3,0\n

0,3,2,2,3,0\n5,5,3,3,5,8\n8,8,0,0,5,8
input:3,8,2\n3,2,2\n8,5,2
output:3,8,2,8,3,3\n3,2,2,5,2,8\n8,5,2,2,2,2\n

2,2,2,2,5,8\n8,2,5,2,2,3\n3,3,8,2,8,3
input:0,3,0\n6,6,6\n0,3,0
output:0,3,0,0,6,0\n6,6,6,3,6,3\n0,3,0,0,6,0\n

0,6,0,0,3,0\n3,6,3,6,6,6\n0,6,0,0,3,0
input:2,5,0\n2,5,1\n3,1,1
output:

Response by gpt-4-0613
2,5,0,5,2,2\n2,5,1,1,5,3\n3,1,1,1,1,2\n
2,1,1,1,5,2\n5,1,5,1,5,3\n2,1,2,5,2,2 ✗

Response by ours
2,5,0,3,2,2\n2,5,1,1,5,5\n3,1,1,1,1,0\n
0,1,1,1,1,3\n5,5,1,1,5,2\n2,2,3,0,5,2 ✓

Visualization

gpt-4-0613 ours

input-output grids

Table 10: A example showing the responses by gpt-4-0613 and our model on ARC dataset.

China National Conference on Computational Linguistics

Prompt
You are a smart chatbot. Your goal is to give the output
for the last input.
input:0,0,0,0,1,0\n0,0,0,0,1,0\n0,0,0,0,1,0\n

2,2,2,2,2,2\n0,0,0,0,1,0\n0,0,0,0,1,0
output:0,0,0,0,1,0\n0,0,0,0,1,0\n0,0,0,0,1,0\n

2,2,2,2,1,2\n0,0,0,0,1,0\n0,0,0,0,1,0
input:0,3,0,0,0,0\n0,3,0,0,0,0\n0,3,0,0,0,0\n

4,3,4,4,4,4\n0,3,0,0,0,0\n0,3,0,0,0,0
output:0,3,0,0,0,0\n0,3,0,0,0,0\n0,3,0,0,0,0\n

4,4,4,4,4,4\n0,3,0,0,0,0\n0,3,0,0,0,0
input:0,0,0,0,8,0\n0,0,0,0,8,0\n7,7,7,7,7,7\n

0,0,0,0,8,0\n0,0,0,0,8,0\n0,0,0,0,8,0
output:0,0,0,0,8,0\n0,0,0,0,8,0\n7,7,7,7,8,7\n

0,0,0,0,8,0\n0,0,0,0,8,0\n0,0,0,0,8,0
input:0,8,0,0,0,0\n5,8,5,5,5,5\n0,8,0,0,0,0\n

5,5,5,5,5,5\n0,8,0,0,0,0\n0,8,0,0,0,0
output:0,8,0,0,0,0\n5,5,5,5,5,5\n0,8,0,0,0,0\n

5,8,5,5,5,5\n0,8,0,0,0,0\n0,8,0,0,0,0
input:0,9,0,0,0,0\n0,9,0,0,0,0\n0,9,0,0,0,0\n

3,3,3,3,3,3\n0,9,0,0,0,0\n0,9,0,0,0,0
output:

Response by gpt-4-0613
0,9,0,0,0,0\n0,9,0,0,0,0\n0,9,0,0,0,0\n
3,3,3,3,9,3\n0,9,0,0,0,0\n0,9,0,0,0,0 ✗

Response by ours
0,9,0,0,0,0\n0,9,0,0,0,0\n0,9,0,0,0,0\n
3,9,3,3,3,3\n0,9,0,0,0,0\n0,9,0,0,0,0 ✓

Visualization
input-output grids

gpt-4-0613 ours

Table 11: A example showing the responses by gpt-4-0613 and our model on Concept-ARC dataset.

China National Conference on Computational Linguistics

Prompt
You are a smart chatbot. Your goal is to give the output for the
last input.
input:0,6,6,6,6,6,6,6,6,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
output:0,0,0,0,6,6,6,6,6,6,6,6,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
input:0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0
output:0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0
input:0,0,0,0,5,5,5,5,5,5,5,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
output:0,0,0,0,0,0,0,5,5,5,5,5,5,5,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
input:0,0,0,0,0,0,0,0,0,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,0,0,0,0,0,0
output:

Response by gpt-4-0613
0,0,0,0,0,0,0,0,0,0,0,7,7,7,7,7,7,7,7,7,7,7,7,7,7,0,0,0,0,0 ✗

Response by ours
0,0,0,0,0,0,0,0,0,0,0,0,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,0,0,0 ✓

Visualization
input-output grids

gpt-4-0613

ours

Table 12: A example showing the responses by gpt-4-0613 and our model on 1D-ARC dataset.

China National Conference on Computational Linguistics

Prompt
You are a smart chatbot. Your goal is to give the output for the
last input.
input:5,0,0,0,0\n5,0,5,0,0\n5,0,5,5,0\n5,5,5,5,0\n5,5,5,5,5
output:1,0,0,0,0\n1,0,5,0,0\n1,0,5,5,0\n1,5,5,5,0\n1,5,5,5,2
input:0,0,5,0,0\n5,0,5,0,0\n5,0,5,5,0\n5,5,5,5,0\n5,5,5,5,5
output:0,0,1,0,0\n5,0,1,0,0\n5,0,1,5,0\n5,5,1,5,0\n5,5,1,5,2
input:5,0,0,0,0\n5,5,0,0,0\n5,5,5,0,0\n5,5,5,5,0\n5,5,5,5,5
output:1,0,0,0,0\n1,5,0,0,0\n1,5,5,0,0\n1,5,5,5,0\n1,5,5,5,2
input:0,5,0,0,0\n0,5,0,0,5\n0,5,5,0,5\n5,5,5,0,5\n5,5,5,5,5
output:0,1,0,0,0\n0,1,0,0,5\n0,1,5,0,5\n5,1,5,0,5\n5,1,5,2,5
input:0,0,0,5,0\n0,0,0,5,5\n0,0,5,5,5\n5,0,5,5,5\n5,5,5,5,5
output:

Response by gpt-4-0613
0,0,0,1,0\n0,0,0,1,5\n0,0,5,1,5\n5,0,5,1,5\n5,5,5,1,2 ✗

Response by ours
0,0,0,1,0\n0,0,0,1,5\n0,0,5,1,5\n5,0,5,1,5\n5,2,5,1,5 ✓

Visualization
input-output grids

gpt-4-0613 ours

Table 13: A example showing the responses by gpt-4-0613 and our model on Mini-ARC dataset.

China National Conference on Computational Linguistics

Prompt for GPT-4
Generate more input and output following the same operation.
input: 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0
output: 0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0
input: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0,0,0
output: 0,0,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0,0,0,0
input: 0,8,8,8,8,8,8,8,8,8,8,8,8,0,0,0,0,0,0,0,0,0
output: 0,0,0,8,8,8,8,8,8,8,8,8,8,8,8,0,0,0,0,0,0,0

Generated Data #1 (incorrect steps)
input: 0,0,0,0,4,4,4,4,4,4,4,4,4,4,4,4,4,4,0,0,0,0
output: 0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,4,4,4,4,4,4,0

Generated Data #2 (inconsistent object)
input: 0,0,0,0,0,0,7,7,7,7,7,7,7,7,7,0,0,0,0,0,0,0
output: 0,0,0,0,0,0,0,0,7,7,7,7,7,7,7,7,7,7,0,0,0,0

Table 14: A example showing failure cases of GPT-generated samples.

